ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом шестиугольнике KLMNEF все внутренние углы при вершинах равны. Известно, что KL = 6, LM = 8, MN = 10 и EF = 2. Найдите длины сторон NE и KF.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 101897

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

В выпуклом шестиугольнике ABCDEF все внутренние углы при вершинах равны. Известно, что AB = 3, BC = 4, CD = 5 и EF = 1. Найдите длины сторон DE и AF.
Прислать комментарий     Решение


Задача 101898

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

В выпуклом шестиугольнике KLMNEF все внутренние углы при вершинах равны. Известно, что KL = 6, LM = 8, MN = 10 и EF = 2. Найдите длины сторон NE и KF.
Прислать комментарий     Решение


Задача 56503

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники с углами 2α, 2β и 2γ при вершинах A', B' и C', причём  α + β + γ = 180°.  Докажите, что углы треугольника A'B'C' равны α, β и γ.

Прислать комментарий     Решение

Задача 53566

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Найдите углы четырёхугольника ABCD, вершины которого расположены на окружности, если  ∠ABD = 74°,  ∠DBC = 38°,  ∠BDC = 65°.

Прислать комментарий     Решение


Задача 65170

Темы:   [ Четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 8,9,10,11

Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .