ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В параллелограмме ABCD диагонали пересекаются в точке O , длина диагонали BD равна 48. Расстояние между центрами окружностей, описанных около треугольников AOD и COD , равно 20. Радиус окружности, описанной около треугольника AOB , равен 13. Найдите длину стороны AB . Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 211]
Площадь треугольника равна 6, периметр его равен 18, расстояние от центра вписанной окружности до одной из вершин равно . Найдите наименьшую сторону треугольника.
Площадь треугольника равна 4, периметр его равен 24, отрезок биссектрисы от одной из вершин до центра вписанной окружности равен . Найдите наибольшую сторону треугольника.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|