ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Докажите, что разность числа, имеющего нечётное количество цифр, и числа, записанного теми же цифрами, но в обратном порядке, делится на 99.

Вниз   Решение


На физическом кружке учитель поставил следующий эксперимент. Он разложил на чашечные весы 16 гирек массами 1, 2, 3, ..., 16 грамм так, что одна из чаш перевесила. Пятнадцать учеников по очереди выходили из класса и забирали с собой по одной гирьке, причем после выхода каждого ученика весы меняли свое положение и перевешивала противоположная чаша весов. Какая гирька могла остаться на весах?

ВверхВниз   Решение


В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]      



Задача 104027

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8,9

В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Прислать комментарий     Решение


Задача 30751

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

Прислать комментарий     Решение

Задача 30753

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 30757

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7,8,9

В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 30766

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .