ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Назовём белыми числа вида $\sqrt{a+b\sqrt{2}}$, где $a$ и $b$ — целые, не равные нулю. Аналогично, назовём чёрными числа вида $\sqrt{c+d\sqrt{7}}$, где $c$ и $d$ — целые, не равные нулю. Может ли чёрное число равняться сумме нескольких белых? ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101]
| 2x -
Назовём белыми числа вида $\sqrt{a+b\sqrt{2}}$, где $a$ и $b$ — целые, не равные нулю. Аналогично, назовём чёрными числа вида $\sqrt{c+d\sqrt{7}}$, где $c$ и $d$ — целые, не равные нулю. Может ли чёрное число равняться сумме нескольких белых?
Докажите следующие равенства:
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 101] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |