ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AX ≥ XB, BY ≥ YC, CZ ≥ ZD, DT ≥ TA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность. ![]() |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 496]
а) Расстояния от точек P, Q и S до точки O равны p, q и s, а радиус описанной окружности равен R. Найдите длины сторон треугольника PQS. б) Докажите, что высоты треугольника PQS пересекаются в точке O.
б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник. г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |