ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что BM = DN. |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 496]
В треугольнике ABC с углом B, равным 50°, и стороной BC = 3 на высоте BH взята такая точка D, что ∠ADC = 130° и AD = .
В треугольнике ABC с углом A, равным 40° и стороной
AB = на высоте AH взята такая точка D, что ∠BDC = 140° и CD = 1.
Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна ½ AC² sin∠A.
Четырёхугольник ABCD вписанный, M – точка пересечения прямых AB и CD, N – точка пересечения прямых BC и AD. Известно, что BM = DN.
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|