Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 496]
В четырёхугольнике ABCD ∠B = ∠D = 90° и AC = BC + DC. Точка P на луче BD такова, что BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырёхугольник ABCD – вписанный, AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что MN = BM + ND.
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольном треугольнике ABC проведены высоты AD и CE. Точки M и N – основания перпендикуляров, опущенных на прямую DE из точек A и C соответственно. Докажите, что ME = DN.
Четырёхугольник ABCD, в котором AB = BC и AD = CD, вписан в окружность. Точка M лежит на меньшей дуге CD этой окружности. Прямые BM и CD пересекаются в точке P, а прямые AM и BD – в точке Q. Докажите, что PQ || AC.
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность с центром O. Описанные окружности треугольников ABO и CDO, пересеклись второй раз в точке F. Докажите, что описанная окружность треугольника AFD проходит через точку E пересечения отрезков AC и BD.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 496]