ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На высотах (но не на их продолжениях) остроугольного треугольника ABC взяты точки A1 , B1 , C1 , отличные от точки пересечения высот H , причём сумма площадей треугольников ABC1 , BCA1 , CAB1 равна площади треугольника ABC . Докажите, что окружность, описанная около треугольника A1B1C1 , проходит через точку H . ![]() |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 148]
Три прямые, параллельные сторонам треугольника ABC и проходящие через одну точку, отсекают от треугольника ABC трапеции. Три диагонали этих трапеций, не имеющие общих концов, делят треугольник на семь частей, из которых четыре — треугольники. Докажите, что сумма площадей трёх из этих треугольников, прилегающих к сторонам треугольника ABC, равна площади четвёртого.
Углы треугольника ABC удовлетворяют равенству
cos2A + cos2B + cos2C = 1.
Найдите площадь этого треугольника, если радиусы вписанной и
описанной окружностей равны
В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке O. Известно, что площади треугольников AOB и COD равны.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 148] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |