ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дана треугольная пирамида ABCD с плоскими прямыми углами при вершине D, в которой  CD = AD + DB.
Докажите, что сумма плоских углов при вершине C равна 90°.

Вниз   Решение


Имя входного файла:

net.in

Имя выходного файла:

net.out

Максимальное время работы на одном тесте:

1 секунда

Максимальный объем используемой памяти:

64 мегабайта

Максимальная оценка за задачу:

100 баллов

   

Петя и Вася нашли на чердаке остатки рыболовной сети своего деда. Часть веревок давно сгнила, и сеть распалась на большое число кусков, каждый из которых состоит не более чем из 50 веревочек единичной длины.

Так как использовать по назначению остатки данной сети было уже нельзя, братья разложили один из найденных кусков на прямоугольном столе так, что веревочки оказались параллельны сторонам стола, и стали играть в следующую игру.

Братья делают ходы по очереди, Петя ходит первым. Своим ходом игрок находит веревочку, являющуюся стороной некоторой целой единичной квадратной ячейки сети (все четыре образующие ее веревочки целы), и перерезает выбранную веревочку. Проигрывает тот из братьев, который не может сделать очередной ход.

Требуется написать программу, которая по описанию куска сети на столе определяет, может ли Петя выиграть при любой игре Васи, и если да, то какой первый ход он должен для этого сделать.

Формат входных данных

В первой строке входного файла задано число N (1 ≤ N ≤ 50) - количество веревочек единичной длины, из которых состоит кусок сети. Следующие N строк входного файла содержат по две пары целых чисел - координаты концов веревочек. Каждая четверка чисел описывает отрезок единичной длины, параллельный одной из осей координат.

Координаты всех точек неотрицательны и не превосходят 50.

Формат выходных данных

Первая строка выходного файла должна содержать число 1, если Петя может выиграть при любой игре Васи, и число 2, если нет. В случае выигрыша Пети вторая строка должна содержать номер веревочки, которую он должен перерезать первым ходом. Если возможных выигрышных ходов несколько, выведите любой. Веревочки пронумерованы, начиная с 1, в том порядке, в котором они заданы во входном файле.

Примечание

Максимальная оценка за решение задачи при N ≤ 13 равна 40 баллам.

Пример

net.in

net.out

11

1 1 1 2

2 3 2 4

3 1 3 2

1 2 1 3

1 1 2 1

2 1 2 2

2 1 3 1

1 2 2 2

2 2 3 2

1 3 2 3

2 3 3 3

1

6

ВверхВниз   Решение


Теорема косинусов для трёхгранного угла. Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что

cos A = , cos B = , cos C = .

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 108847

Темы:   [ Теоремы синусов и косинусов для трехгранных углов ]
[ Замощения костями домино и плитками ]
Сложность: 4
Классы: 8,9

Теорема косинусов для трёхгранного угла. Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что

cos A = , cos B = , cos C = .

Прислать комментарий     Решение

Задача 108848

Темы:   [ Теоремы синусов и косинусов для трехгранных углов ]
[ Полярный трехгранный угол ]
Сложность: 4
Классы: 8,9

Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что

cos α = , cos β = , cos γ = .

Прислать комментарий     Решение

Задача 108849

Темы:   [ Теоремы синусов и косинусов для трехгранных углов ]
[ Полярный трехгранный угол ]
Сложность: 4
Классы: 8,9

Все двугранные углы некоторого трёхгранного угла – острые. Докажите, что все его плоские углы – также острые.
Прислать комментарий     Решение


Задача 61247

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Теоремы синусов и косинусов для трехгранных углов ]
Сложность: 3+
Классы: 10,11

Теорема синусов и первая теорема косинусов для трехгранного угла. Пусть имеется трехгранный угол с плоскими углами $ \alpha$, $ \beta$, $ \gamma$ и противолежащими им двугранными углами A, B, C. Для него справедлива теорема синусов (8.7 ) и две теоремы косинусов (8.6 ), (8.8) (смотрите ниже). После того, как одна из этих теорем доказана, другие могут быть получены путем алгебраических преобразований. Отвлечемся от геометрической природы задачи и предположим, что просто даны равенства

cos$\displaystyle \alpha$ = cos$\displaystyle \beta$cos$\displaystyle \gamma$ + sin$\displaystyle \beta$sin$\displaystyle \gamma$cos A,
cos$\displaystyle \beta$ = cos$\displaystyle \alpha$cos$\displaystyle \gamma$ + sin$\displaystyle \alpha$sin$\displaystyle \gamma$cos B,
cos$\displaystyle \gamma$ = cos$\displaystyle \alpha$cos$\displaystyle \beta$ + sin$\displaystyle \alpha$sin$\displaystyle \beta$cos C,
(8.6)

и, кроме того, величины $ \alpha$, $ \beta$, $ \gamma$ и A, B, C заключены между 0 и $ \pi$. Докажите, что

$\displaystyle {\frac{\sin A}{\sin \alpha}}$ = $\displaystyle {\frac{\sin B}{\sin 
\beta}}$ = $\displaystyle {\frac{\sin C}{\sin \gamma}}$. (8.7)


Прислать комментарий     Решение

Задача 65920

Темы:   [ Тетраэдр (прочее) ]
[ Теоремы синусов и косинусов для трехгранных углов ]
[ Тождественные преобразования (тригонометрия) ]
[ Перпендикулярные плоскости ]
[ Развертка помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Дана треугольная пирамида ABCD с плоскими прямыми углами при вершине D, в которой  CD = AD + DB.
Докажите, что сумма плоских углов при вершине C равна 90°.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .