ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?

Вниз   Решение


Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три слоя 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.

ВверхВниз   Решение


Пол комнаты площадью 6 м² покрыт тремя коврами, площадь каждого из которых равна 3 м².
Докажите, что какие-то два из этих ковров перекрываются по площади, не меньшей 1 м².

ВверхВниз   Решение


На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a .

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 13]      



Задача 110285

Темы:   [ Сфера, описанная около пирамиды ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3
Классы: 10,11

Основанием пирамиды служит многоугольник, около которого можно описать окружность. Докажите, что около этой пирамиды можно описать сферу. Найдите радиус этой сферы, если радиус окружности, описанной около основания пирамиды, равен r, высота равна h, а основание высоты совпадает с вершиной основания пирамиды.
Прислать комментарий     Решение


Задача 35086

Темы:   [ Окружности на сфере ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Итак, Чукча выходит каждый день на охоту по следующему маршруту: 10 км на юг, 10 км на восток, 10 км на север (На запад чукча не ходит) И хоп! Оказывается перед своим чумом. "Однако!" говорит чукча. Теперь вопрос: найти Геометрическое Место Точек, где может находиться чум чукчи.
Прислать комментарий     Решение


Задача 78071

Темы:   [ Высота пирамиды (тетраэдра) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 3+
Классы: 10,11

Даны положительные числа h, s1, s2 и расположенный в пространстве треугольник ABC. Сколькими способами можно выбрать точку D так, чтобы в тетраэдре ABCD высота, опущенная из вершины D, была равна h, а площади граней ACD и BCD соответственно s1 и s2 (исследовать все возможные случаи)?
Прислать комментарий     Решение


Задача 104040

Темы:   [ Окружности на сфере ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Турист вышел утром из палатки, прошел 10 км на юг, потом 10 км на восток, 10 км на север и оказался у своей палатки. В палатке он обнаружил медведя.
а) Какого цвета был медведь?
б) Мог ли там оказаться не медведь, а пингвин?
Прислать комментарий     Решение


Задача 109170

Темы:   [ Вычисление объемов ]
[ ГМТ в пространстве (прочее) ]
[ Объем круглых тел ]
Сложность: 5-
Классы: 10,11

На плоскости дан квадрат со стороной a . Найти объём тела, состоящего из всех точек пространства, расстояние от которых до части плоскости, ограниченной квадратом, не больше a .
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .