ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

   Решение

Задачи

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 590]      



Задача 98319

Темы:   [ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите неравенство  

Прислать комментарий     Решение

Задача 108623

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что  

Прислать комментарий     Решение

Задача 108624

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что  

Прислать комментарий     Решение

Задача 109857

Темы:   [ Итерации ]
[ Квадратные уравнения. Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

Прислать комментарий     Решение

Задача 110008

Темы:   [ Перенос помогает решить задачу ]
[ Системы точек ]
[ Классические неравенства (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 7,8,9,10

Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Докажите, что найдётся пара отмеченных чисел, одно из которых делится на другое.

Прислать комментарий     Решение

Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .