Версия для печати
Убрать все задачи
На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.

Решение
Из бесконечной шахматной доски вырезали многоугольник со сторонами,
идущими по сторонам клеток. Отрезок периметра многоугольника
называется черным, если примыкающая к нему изнутри многоугольника
клетка – черная, соответственно белым, если клетка белая.
Пусть
A – количество черных отрезков на периметре,
B –
количество белых, и пусть многоугольник состоит из
a черных
и
b белых клеток. Докажите, что
A-B=4(
a-b)
.

Решение