ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В основании пирамиды SABCD лежит трапеция ABCD с основаниями BC и AD , причём BC=2AD . На рёбрах SA и SB взяты точки K и L , причём 2SK=KA и 3SL = LB . В каком отношении плоскость KLC делит ребро SD ?

Вниз   Решение


Окружность с центром O проходит через вершину B ромба ABCD и касается лучей CB и CD . Найдите площадь ромба, если DO= , OC= .

ВверхВниз   Решение


Найдите объём правильной шестиугольной пирамиды с площадью Q боковой грани и углом α бокового ребра с плоскостью основания.

Вверх   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 378]      



Задача 110371

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с боковым ребром b и плоским углом ϕ при вершине.
Прислать комментарий     Решение


Задача 110375

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с высотой h и плоским углом ϕ при вершине.
Прислать комментарий     Решение


Задача 110384

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с площадью Q боковой грани и углом α бокового ребра с плоскостью основания.
Прислать комментарий     Решение


Задача 110387

Темы:   [ Правильная пирамида ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Найдите объём правильной шестиугольной пирамиды с площадью Q боковой грани и плоским углом ϕ при вершине.
Прислать комментарий     Решение


Задача 110391

Темы:   [ Прямоугольные параллелепипеды ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 10,11

Пусть ABCDA1B1C1D1 – единичный куб. Найдите объём общей части треугольных пирамид ACB1D1 и A1C1BD .
Прислать комментарий     Решение


Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .