ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.

   Решение

Задачи

Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 492]      



Задача 66782

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Стюарта ]
[ Теорема Карно ]
Сложность: 5
Классы: 9,10,11

Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$.
Прислать комментарий     Решение


Задача 73669

Темы:   [ Основные свойства центра масс ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема о группировке масс ]
[ ГМТ с ненулевой площадью ]
Сложность: 5
Классы: 9,10,11

Автор: Л.Г.Макаров

Какое множество точек заполняют центры тяжести треугольников, три вершины которых лежат соответственно на трёх сторонах АВ, ВС и АС данного треугольника АВС?
Прислать комментарий     Решение


Задача 108218

Темы:   [ Касающиеся окружности ]
[ Углы между биссектрисами ]
[ Описанные четырехугольники ]
[ Биссектриса угла (ГМТ) ]
Сложность: 5+
Классы: 9,10,11

Дан выпуклый четырёхугольник ABCD , и проведены биссектрисы lA , lB , lC , lD внешних углов этого четырёхугольника. Прямые lA и lB пересекаются в точке K , прямые lB и lC – в точке L , прямые lC и lD – в точке M , прямые lD и lA – в точке N . Докажите, что если окружности, описанные около треугольников ABK и CDM , касаются внешним образом, то и окружности, описанные около треугольников BCL и DAN , касаются внешним образом.
Прислать комментарий     Решение


Задача 110780

Темы:   [ Радикальная ось ]
[ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
Сложность: 5+
Классы: 9,10,11

Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.
Прислать комментарий     Решение


Задача 115410

Темы:   [ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 6-
Классы: 9,10,11

Окружность с центром  I касается сторон  AB , BC , AC неравнобедренного треугольника  ABC в точках C1 , A1 , B1 соответственно. Окружности  ωB и  ωC вписаны в четырехугольники  BA1IC1 и  CA1IB1 соответственно. Докажите, что общая внутренняя касательная к  ωB и  ωC , отличная от  IA1 , проходит через точку  A .
Прислать комментарий     Решение


Страница: << 89 90 91 92 93 94 95 >> [Всего задач: 492]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .