ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке. Решение |
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78]
Прямые, содержащие медианы треугольника ABC, вторично пересекают его описанную окружность в точках A1, B1, C1. Прямые, проходящие через A, B, C и параллельные противоположным сторонам, пересекают ее же в точках A2, B2, C2. Докажите, что прямые A1A2, B1B2, C1C2 пересекаются в одной точке.
В угол вписаны касающиеся внешним образом окружности радиусов r и R (r < R). Первая из них касается сторон угла в точках A и B. Найдите AB.
В треугольник ABC вписана окружность радиуса R, касающаяся стороны AC в точке D, стороны AB в точке E и стороны BC в точке F. Известно, что AD = R,
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 78] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|