ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение. Решение |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 91]
В треугольнике ABC сторона AC наименьшая. На сторонах AB и CB взяты точки K и L соответственно, причём KA = AC = CL. Пусть M – точка пересечения AL и KC, а I – центр вписанной в треугольник ABC окружности. Докажите, что прямая MI перпендикулярна прямой AC.
Биссектрисы AD и CE треугольника ABC пересекаются в точке O. Прямая, симметричная AB относительно CE, пересекает прямую, симметричную BC относительно AD, в точке K. Докажите, что KO ⊥ AC.
В треугольнике ABC точка I – центр вписанной окружности, точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что OI ⊥ AC.
Докажите, что квадрат биссектрисы треугольника равен произведению сторон, её заключающих, без произведения отрезков третьей стороны, на которые она разделена биссектрисой.
Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 91] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|