ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дана треугольная пирамида ABCD с плоскими прямыми углами при вершине D, в которой  CD = AD + DB.
Докажите, что сумма плоских углов при вершине C равна 90°.

Вниз   Решение


Имя входного файла:

net.in

Имя выходного файла:

net.out

Максимальное время работы на одном тесте:

1 секунда

Максимальный объем используемой памяти:

64 мегабайта

Максимальная оценка за задачу:

100 баллов

   

Петя и Вася нашли на чердаке остатки рыболовной сети своего деда. Часть веревок давно сгнила, и сеть распалась на большое число кусков, каждый из которых состоит не более чем из 50 веревочек единичной длины.

Так как использовать по назначению остатки данной сети было уже нельзя, братья разложили один из найденных кусков на прямоугольном столе так, что веревочки оказались параллельны сторонам стола, и стали играть в следующую игру.

Братья делают ходы по очереди, Петя ходит первым. Своим ходом игрок находит веревочку, являющуюся стороной некоторой целой единичной квадратной ячейки сети (все четыре образующие ее веревочки целы), и перерезает выбранную веревочку. Проигрывает тот из братьев, который не может сделать очередной ход.

Требуется написать программу, которая по описанию куска сети на столе определяет, может ли Петя выиграть при любой игре Васи, и если да, то какой первый ход он должен для этого сделать.

Формат входных данных

В первой строке входного файла задано число N (1 ≤ N ≤ 50) - количество веревочек единичной длины, из которых состоит кусок сети. Следующие N строк входного файла содержат по две пары целых чисел - координаты концов веревочек. Каждая четверка чисел описывает отрезок единичной длины, параллельный одной из осей координат.

Координаты всех точек неотрицательны и не превосходят 50.

Формат выходных данных

Первая строка выходного файла должна содержать число 1, если Петя может выиграть при любой игре Васи, и число 2, если нет. В случае выигрыша Пети вторая строка должна содержать номер веревочки, которую он должен перерезать первым ходом. Если возможных выигрышных ходов несколько, выведите любой. Веревочки пронумерованы, начиная с 1, в том порядке, в котором они заданы во входном файле.

Примечание

Максимальная оценка за решение задачи при N ≤ 13 равна 40 баллам.

Пример

net.in

net.out

11

1 1 1 2

2 3 2 4

3 1 3 2

1 2 1 3

1 1 2 1

2 1 2 2

2 1 3 1

1 2 2 2

2 2 3 2

1 3 2 3

2 3 3 3

1

6

ВверхВниз   Решение


Теорема косинусов для трёхгранного угла. Пусть α , β , γ – плоские углы трёхгранного угла SABC с вершиной S , противолежащие рёбрам SA , SB , SC соответственно; A , B , C – двугранные углы при этих рёбрах. Докажите, что

cos A = , cos B = , cos C = .

ВверхВниз   Решение


Собралось n человек. Некоторые из них знакомы между собой, причём каждые два незнакомых имеют ровно двух общих знакомых, а каждые два знакомых не имеют общих знакомых. Доказать, что каждый из присутствующих знаком с одинаковым числом человек.

ВверхВниз   Решение


Сторона основания правильной треугольной пирамиды SABC ( S – вершина) равна 8. Точки K и L расположены на рёбрах AB и AC соответственно, причём AK=7 , AL=4 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой K , центр основания лежит на прямой SC , а отрезок KL является одной из образующих. Найдите объём этого конуса.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 108]      



Задача 110909

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 10. Точки E и F расположены на рёбрах DC и BC соответственно, причём CE=6 , CF=9 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой E , центр основания лежит на прямой SA , а отрезок EF является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110910

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной пирамиды SABC ( S – вершина) равна 8. Точки K и L расположены на рёбрах AB и AC соответственно, причём AK=7 , AL=4 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой K , центр основания лежит на прямой SC , а отрезок KL является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110911

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной четырёхугольной пирамиды SABCD ( S – вершина) равна 4. Точки E и F расположены на рёбрах CB и AD соответственно, причём CE=3 , AF=2 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой F , центр основания лежит на прямой SD , а отрезок EF является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 110912

Темы:   [ Конус ]
[ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Сторона основания правильной треугольной пирамиды SABC ( S – вершина) равна 3. Точки K и L расположены на рёбрах AC и BC соответственно, причём CK= , BL=1 . Известно, что для данной пирамиды существует единственный конус, вершина которого совпадает с точкой K , центр основания лежит на прямой SB , а отрезок KL является одной из образующих. Найдите объём этого конуса.
Прислать комментарий     Решение


Задача 111141

Темы:   [ Конус ]
[ Поверхность круглых тел ]
Сложность: 4
Классы: 10,11

Угол между прямыми, каждая из которых содержит по одной образующей конуса, равен 45o . Прямая, перпендикулярная обеим эти образующим, пересекает плоскость основания конуса под углом . Найдите угол боковой развёртки конуса, если он больше 270o .
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 108]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .