ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основания параллелепипеда – квадраты со стороной b , а все боковые грани – ромбы. Одна из вершин верхнего основания одинаково удалена от всех вершин нижнего основания. Найдите объём параллелепипеда.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 378]      



Задача 110411

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

В основании пирамиды ABCD лежит прямоугольный треугольник ABC с гипотенузой AC , DC – высота пирамиды, AB=1 , BC=2 , CD=3 . Найдите двугранный угол между плоскостями ADB и ADC .
Прислать комментарий     Решение


Задача 110435

Темы:   [ Отношение объемов ]
[ Куб ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

На рёбрах AA1 и CC1 куба ABCDA1B1C1D1 отмечены соответственно точки E и F , причём AE = 2A1E , CF =2C1F . Через точки B , E и F проведена плоскость, делящая куб на две части. Найдите отношение объёма части, содержащей точку B1 , к объёму всего куба.
Прислать комментарий     Решение


Задача 110436

Темы:   [ Отношение объемов ]
[ Куб ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

Куб ABCDA1B1C1D1 рассечен на две части плоскостью, проходящей через вершину B , середину ребра B1C1 и точку M , лежащую на ребре AA1 так, что AM = 2A1M . Найдите отношение объёма части, содержащей точку B1 , к объёму всего куба.
Прислать комментарий     Решение


Задача 110493

Темы:   [ Объем тетраэдра и пирамиды ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 10,11

Основанием пирамиды служит прямоугольный треугольник с острым углом . Каждое боковое ребро равно и наклонено к плоскости основания под углом . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 111109

Темы:   [ Объем параллелепипеда ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Основания параллелепипеда – квадраты со стороной b , а все боковые грани – ромбы. Одна из вершин верхнего основания одинаково удалена от всех вершин нижнего основания. Найдите объём параллелепипеда.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .