ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$. ![]() ![]() В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ? ![]() ![]() |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 78]
В тупоугольном треугольнике наибольшая сторона равна 4, а
наименьшая — 2. Может ли площадь треугольника быть больше
2
Внутри треугольника ABC взята точка M. Докажите, что
AM . BC + BM . AC + CM . AB
где S — площадь треугольника ABC.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 78] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |