ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Основанием прямой призмы является равнобедренная трапеция ABCD с основаниями AD=15 , BC=3 и боковой стороной AB=10 ; высота призмы равна 9. Плоскость P пересекает боковые рёбра AA1 , BB1 , CC1 и DD1 в точках K , L , M и N соответственно, причём AK=3 . Площади фигур BLMC , BLKA , CMND и DNKA образуют в указанном порядке арифметическую прогрессию. В каком отношении плоскость P делит объём призмы?

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 302]      



Задача 111393

Темы:   [ Отношение объемов ]
[ Частные случаи параллелепипедов (прочее) ]
Сложность: 4
Классы: 10,11

Основанием прямой призмы является равнобедренная трапеция ABCD с основаниями AD=15 , BC=3 и боковой стороной AB=10 ; высота призмы равна 9. Плоскость P пересекает боковые рёбра AA1 , BB1 , CC1 и DD1 в точках K , L , M и N соответственно, причём AK=3 . Площади фигур BLMC , BLKA , CMND и DNKA образуют в указанном порядке арифметическую прогрессию. В каком отношении плоскость P делит объём призмы?
Прислать комментарий     Решение


Задача 111402

Темы:   [ Правильная пирамида ]
[ Куб ]
Сложность: 4
Классы: 10,11

Сторона основания правильной треугольной пирамиды равна 2 , а высота равна 3. Вершина A куба ABCDA1B1C1D1 находится в центре основания пирамиды, вершина C1 – на высоте пирамиды, а ребро CD лежит в плоскости одной из боковых граней. Найдите длину ребра куба.
Прислать комментарий     Решение


Задача 116517

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Подобные треугольники (прочее) ]
[ Уравнение плоскости ]
[ Теорема о трех перпендикулярах ]
[ Объем тетраэдра и пирамиды ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

В кубе ABCDA1B1C1D1, ребро которого равно 6, точки M и N – середины рёбер AB и B1C1 соответственно, а точка K расположена на ребре DC так, что
DK = 2KC.  Найдите
  а) расстояние от точки N до прямой AK;
  б) расстояние между прямыми MN и AK;
  в) расстояние от точки A1 до плоскости треугольника MNK.

Прислать комментарий     Решение

Задача 111727

Темы:   [ Свойства сечений ]
[ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Комбинаторная геометрия (прочее) ]
[ Пирамида (прочее) ]
Сложность: 4+
Классы: 10,11

а) Все вершины пирамиды лежат на гранях куба, но не на его ребрах, причем на каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида? б) Все вершины пирамиды лежат в плоскостях граней куба, но не на прямых, содержащих его ребра, причем в плоскости каждой грани лежит хотя бы одна вершина. Какое наибольшее количество вершин может иметь пирамида?
Прислать комментарий     Решение


Задача 79314

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Куб ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 10,11

Астрономический прожектор освещает октант (трёхгранный угол, у которого все плоские углы прямые). Прожектор помещён в центр куба. Можно ли его повернуть таким образом, чтобы он не освещал ни одной вершины куба?
Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .