Страница:
<< 74 75 76 77 78 79
80 >> [Всего задач: 398]
|
|
Сложность: 4 Классы: 10,11
|
В правильной четырёхугольной пирамиде
SABCD с вершиной
S сторона
основания пирамиды равна
b , а высота пирамиды равна
b
. Шар,
вписанный в эту пирамиду, касается боковой грани
SAD в точке
K .
Найдите площадь сечения пирамиды, проходящего через ребро
AB и точку
K .
|
|
Сложность: 4 Классы: 10,11
|
Шар, вписанный в правильную пирамиду
ABCD , касается грани
ADC в
точке
K . Через сторону
AB основания
ABC пирамиды и точку
K
проведено сечение. Найдите площадь этого сечения, если сторона основания
пирамиды равна
b , а высота пирамиды равна
b
.
|
|
Сложность: 4 Классы: 10,11
|
Bсе ребра правильной четырехугольной
пирамиды равны 1, а все вершины лежат на боковой поверхности
(бесконечного) прямого кругового цилиндра радиуса R.
Найдите все возможные значения R.
|
|
Сложность: 7 Классы: 10,11
|
Дана сфера
радиуса 1. На ней расположены равные окружности γ
0, γ
1, ..., γ
n радиуса r (n ≥ 3). Окружность γ0 касается всех окружностей γ
1, ..., γ
n; кроме того, касаются друг друга окружности γ
1 и γ
2, γ
2 и γ
3, ..., γ
n и γ1. При каких
n это возможно? Вычислите соответствующий
радиус r.
|
|
Сложность: 4 Классы: 10,11
|
Даны правильная четырёхугольная пирамида
SABCD и конус, центр
основания которого лежит на прямой
SO (
SO – высота пирамиды). Точка
E – середина ребра
SD , точка
F лежит на ребре
AD ,
причём
AF=
FD . Треугольник, являющийся одним из осевых
сечений конуса, расположен так, что две его вершины лежат на
прямой
CD , а третья – на прямой
EF .
Найдите объём конуса, если
AB=4
,
SO=3
.
Страница:
<< 74 75 76 77 78 79
80 >> [Всего задач: 398]