ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 398]      



Задача 116519

Темы:   [ Расстояние от точки до плоскости ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильная пирамида ]
[ Теорема о трех перпендикулярах ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 10,11

В правильной треугольной пирамиде ABCD сторона основания ABC равна 4, угол между плоскостью основания ABC и боковой гранью равен . Точки K, M, N – середины отрезков AB, DK, AC соответственно, точка E лежит на отрезке CM и 5ME = CE. Через точку E проходит плоскость П перпендикулярно отрезку CM. В каком отношении плоскость П делит рёбра пирамиды? Найдите площадь сечения пирамиды плоскостью П и расстояние от точки N до плоскости П.

Прислать комментарий     Решение

Задача 87135

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде расположен шар радиуса 1. В точке, делящей пополам высоту пирамиды, он касается внешним образом полушара. Полушар опирается на круг, вписанный в основание пирамиды, шар касается боковых граней пирамиды. Найдите площадь боковой поверхности пирамиды и угол между боковыми гранями пирамиды.
Прислать комментарий     Решение


Задача 87136

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Касающиеся сферы ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

В правильной четырёхугольной пирамиде расположены два шара Q1 и Q2 . Шар Q1 вписан в пирамиду и имеет радиус 2, шар Q2 касается внешним образом шара Q1 и боковых граней пирамиды. Его радиус равен 1. Найдите площадь боковой поверхности пирамиды и угол между соседними боковыми гранями.
Прислать комментарий     Решение


Задача 110529

Темы:   [ Углы между прямыми и плоскостями ]
[ Объем помогает решить задачу ]
[ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 4
Классы: 10,11

Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите:
  1) угол между прямыми AB и B1C1;
  2) площадь треугольника A1B1C1;
  3) расстояние от точки B до плоскости A1B1C1;
  4) радиус вписанного в пирамиду A1B1C1D шара.

Прислать комментарий     Решение

Задача 110530

Темы:   [ Углы между прямыми и плоскостями ]
[ Объем помогает решить задачу ]
[ Правильная пирамида ]
[ Площадь сечения ]
Сложность: 4
Классы: 10,11

Сторона основания ABC правильной треугольной пирамиды ABCD равна 3, двугранный угол между боковой гранью и плоскостью основания пирамиды равен arccos . Точки A1 и C1 – середины рёбер AD и CD соответственно, AB1 – высота в треугольнике ABD . Найдите: 1) угол между прямыми AC и A1B1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки A до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.
Прислать комментарий     Решение


Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 398]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .