ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром I вписанной окружности треугольника ABC, параллелен AC. ![]() |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1547]
Дан равносторонний треугольник ABC. Точка K – середина стороны AB, точка M лежит на стороне BC, причём BM : MC = 1 : 3. На стороне AC выбрана точка P так, что периметр треугольника PKM – наименьший из возможных. В каком отношении точка P делит сторону AC?
Биссектрисы углов A и C треугольника ABC пересекают его стороны в точках A1 и C1, а описанную окружность этого треугольника – в точках A0 и C0 соответственно. Прямые A1C1 и A0C0 пересекаются в точке P. Докажите, что отрезок, соединяющий P с центром I вписанной окружности треугольника ABC, параллелен AC.
Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а сторону BC – в точке M. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.
Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.
Докажите, что при инверсии прямая, проходящая через центр инверсии, переходит сама в себя, а прямая, не проходящая через центр инверсии, переходит в окружность, проходящую через центр инверсии.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 1547] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |