ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 148]      



Задача 111550

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Точка M – середина боковой стороны AB трапеции ABCD с основаниями AD и BC. Площадь трапеции равна 20. Найдите площадь треугольника CMD.

Прислать комментарий     Решение

Задача 111658

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Правильные многоугольники ]
[ Шестиугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри правильного шестиугольника, соединена с вершинами. Возникшие при этом шесть треугольников раскрашены попеременно в красный и синий цвет. Докажите, что сумма площадей красных треугольников равна сумме площадей синих.

Прислать комментарий     Решение

Задача 111672

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Перегруппировка площадей ]
Сложность: 3
Классы: 8,9

Диагонали разбивают четырёхугольник на четыре треугольника. Докажите, что треугольники, прилежащие к двум противоположным сторонам четырёхугольника, равновелики тогда и только тогда, когда две другие стороны четырёхугольника параллельны.
Прислать комментарий     Решение


Задача 116295

Тема:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

На продолжениях сторон AB , BC , CD и DA выпуклого четырёхугольника ABCD за точки B , C , D и A соответственно отложены отрезки BB1 , CC1 , DD1 и AA1 , равные этим сторонам. Найдите площадь четырёхугольника A1B1C1D1 , если площадь четырёхугольника ABCD равна s .
Прислать комментарий     Решение


Задача 52786

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Теорема Пифагора (прямая и обратная) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

Дан треугольник со сторонами 10, 24 и 26. Две меньшие стороны являются касательными к окружности, центр которой лежит на большей стороне.
Найдите радиус окружности.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .