ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, M – точка медианы AA1 (или её продолжения), равноудалённая от точек B1 и C1. Докажите, что  ∠B1MC1 = φ.

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 402]      



Задача 108232

Темы:   [ Перегруппировка площадей ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки и свойства параллелограмма ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

На сторонах BC и CD параллелограмма ABCD взяты точки M и N соответственно. Диагональ BD пересекает стороны AM и AN треугольника AMN соответственно в точках E и F , разбивая его на две части. Докажите, что эти две части имеют одинаковые площади тогда и только тогда, когда точка K , определяемая условиями EK || AD , FK || AB , лежит на отрезке MN .
Прислать комментарий     Решение


Задача 108885

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Ортоцентр и ортотреугольник ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

Высоты AA1 и CC1 треугольника ABC пересекаются в точке H , а описанные окружности треугольников ABC и A1BC1 пересекаются в точке M , отличной от B . Докажите, что прямая MH делит сторону AC пополам.
Прислать комментарий     Решение


Задача 111667

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

На сторонах AB и AC треугольника ABC внешним образом построены прямоугольные треугольники ABC1 и AB1C, причём  ∠C1 = ∠B1 = 90°,
ABC1 = ∠ACB1 = φ;  M – середина BC. Докажите, что MB1 = MC1  и  ∠B1MC1 = 2φ.

Прислать комментарий     Решение

Задача 111669

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, M – точка медианы AA1 (или её продолжения), равноудалённая от точек B1 и C1. Докажите, что  ∠B1MC1 = φ.

Прислать комментарий     Решение

Задача 115344

Темы:   [ Теорема синусов ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

Дан параллелограмм ABCD, в котором  ∠BAC = 40°  и  ∠BCA = 20°.  На диагонали AC отмечены точки E и G, а на стороне AD – точки F и H так, что точки B, E и F лежат на одной прямой,  ∠ABG = ∠AHG = 90°  и  AF = EG.  Докажите, что  AF = HD.

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .