Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 239]
|
|
Сложность: 3+ Классы: 7,8,9
|
В четырёхугольнике $ABCD$ известно, что $AB=BC=CD$, $\angle A = 70^\circ$ и $\angle B = 100^\circ$. Чему могут быть равны углы $C$ и $D$?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.
|
|
Сложность: 4- Классы: 10,11
|
В тетраэдре DABC ∠ACB = ∠ADB, ребро СD перпендикулярно плоскости АВС. В треугольнике АВС дана высота h, проведённая к стороне АВ, и расстояние d от центра описанной окружности до этой стороны. Найдите CD.
|
|
Сложность: 4 Классы: 10,11
|
Точка O – основание высоты четырёхугольной пирамиды. Сфера с центром O касается всех боковых граней пирамиды. Точки A, B, C и D взяты последовательно по одной на боковых ребрах пирамиды так, что отрезки AB, BC и CD проходят через три точки касания сферы с гранями.
Докажите, что отрезок AD проходит через четвёртую точку касания.
Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что AB = PQ.
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 239]