ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Внутри окружности радиуса n расположено 4n отрезков длиной 1. Докажите, что можно провести прямую, параллельную или перпендикулярную данной прямой l и пересекающую по крайней мере два данных отрезка.

Вниз   Решение


Из вершин выпуклого четырехугольника опущены перпендикуляры на диагонали. Докажите, что четырехугольник, образованный основаниями перпендикуляров, подобен исходному четырехугольнику.

ВверхВниз   Решение


Докажите, что середины двух противоположных сторон любого четырёхугольника и середины его диагоналей являются вершинами параллелограмма.

ВверхВниз   Решение


Докажите неравенство для натуральных n:  

ВверхВниз   Решение


Квадратные трёхчлены f(x) и g(x) таковы, что  f '(x)g'(x) ≥ |f(x)| + |g(x)|  при всех действительных x.
Докажите, что произведение f(x)g(x) равно квадрату некоторого трёхчлена.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 79553

Темы:   [ Исследование квадратного трехчлена ]
[ Неравенства с модулями ]
[ Алгебраические задачи на неравенство треугольника ]
Сложность: 4-
Классы: 9,10

Все значения квадратного трёхчлена  ax² + bx + c  на отрезке  [0, 1]  по модулю не превосходят 1.
Какое наибольшее значение при этом может иметь величина  |a| + |b| + |c|?

Прислать комментарий     Решение

Задача 110162

Темы:   [ Выделение полного квадрата. Суммы квадратов ]
[ Неравенства с модулями ]
[ Иррациональные неравенства ]
Сложность: 4-
Классы: 9,10,11

Положительные числа x, y, z таковы, что модуль разности любых двух из них меньше 2.
Докажите, что   + + > x + y + z.

Прислать комментарий     Решение

Задача 111763

Темы:   [ Вычисление производной ]
[ Неравенства с модулями ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4
Классы: 10,11

Квадратные трёхчлены f(x) и g(x) таковы, что  f '(x)g'(x) ≥ |f(x)| + |g(x)|  при всех действительных x.
Докажите, что произведение f(x)g(x) равно квадрату некоторого трёхчлена.

Прислать комментарий     Решение

Задача 110748

Темы:   [ Выпуклый анализ и линейное программирование ]
[ Неравенства с модулями ]
Сложность: 6-
Классы: 10,11

Даны числа а1, ..., аn.
Для 1 ≤ in положим

di = MAX { aj | 1 ≤ ji } - MIN { aj | ijn }
d = MAX { di | 1 ≤ in }

а) Доказать, что для любых x1x2 ≤ ... ≤ xn выполняется неравенство

MAX { |xi - ai| | 1 ≤ in } ≥ d/2.


б) Доказать, что равенство в (*) выполняется для некоторых {xi} i=1...n

Прислать комментарий     Решение

Задача 60309

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Индукция (прочее) ]
[ Неравенства с модулями ]
Сложность: 2
Классы: 8

Докажите неравенство: |x1 + ... + xn| ≤ |x1| + ... + |xn|, где x1,..., xn — произвольные числа.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .