ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 55183

Темы:   [ Неравенства с медианами ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Докажите, что в любом треугольнике большей стороне соответствует меньшая медиана.

Прислать комментарий     Решение


Задача 57307

Тема:   [ Неравенства с медианами ]
Сложность: 4
Классы: 8

Точки  A1,..., An не лежат на одной прямой. Пусть две разные точки P и Q обладают тем свойством, что  A1P + ... + AnP = A1Q + ... + AnQ = s. Докажите, что тогда  A1K + ... + AnK < s для некоторой точки K.
Прислать комментарий     Решение


Задача 57412

Тема:   [ Неравенства с медианами ]
Сложность: 4
Классы: 8,9

а) Докажите, что если a, b, c — длины сторон произвольного треугольника, то  a2 + b2 $ \geq$ c2/2.
б) Докажите, что  ma2 + mb2 $ \geq$ 9c2/8.
Прислать комментарий     Решение


Задача 115595

Темы:   [ Неравенства с медианами ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Сумма расстояний между серединами противоположных сторон четырёхугольника равна его полупериметру. Докажите, что этот четырёхугольник — параллелограмм.
Прислать комментарий     Решение


Задача 108204

Темы:   [ Неравенства с медианами ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные и описанные окружности ]
Сложность: 5-
Классы: 9,10,11

Пусть a , b и c – стороны треугольника, ma , mb и mc – медианы, проведённые к этим сторонам, D – диаметр окружности, описанной около треугольника. Докажите, что

+ + 6D.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .