ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны. ![]() |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 290]
В треугольнике ABC на сторонах AC и BC взяты соответственно точки X и Y, причём ∠ABX = ∠YAC, ∠AYB = ∠BXC, XC = YB.
В выпуклом четырёхугольнике ABCD диагонали AC и BD равны. Кроме того, ∠BAC = ∠ADB, ∠CAD + ∠ADC = ∠ABD. Найдите угол BAD.
Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?
Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.
Треугольник ABC — равносторонний; A1, B1, C1 — середины сторон BC, AC, AB соответственно. Докажите, что прямая A1C1 касается окружности, проходящей через точки A1B1C.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 290] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |