ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

   Решение

Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 290]      



Задача 108120

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC на сторонах AC и BC взяты соответственно точки X и Y, причём  ∠ABX = ∠YAC,  ∠AYB = ∠BXCXC = YB.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 108665

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD диагонали AC и BD равны. Кроме того,  ∠BAC = ∠ADB,  ∠CAD + ∠ADC = ∠ABD.  Найдите угол BAD.

Прислать комментарий     Решение

Задача 109497

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 4-
Классы: 7,8,9

Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?

Прислать комментарий     Решение

Задача 116175

Темы:   [ Векторы помогают решить задачу ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 9,10,11

Cередины противолежащих сторон шестиугольника соединены отрезками. Oказалось, что точки попарного пересечения этих отрезков образуют равносторонний треугольник. Докажите, что проведённые отрезки равны.

Прислать комментарий     Решение

Задача 53653

Темы:   [ Угол между касательной и хордой ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Треугольник ABC — равносторонний; A1, B1, C1 — середины сторон BC, AC, AB соответственно. Докажите, что прямая A1C1 касается окружности, проходящей через точки A1B1C.

Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .