ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для заданных значений a, b, c и d оказалось, что графики функций и имеют ровно одну общую точку. Докажите, что графики функций и также имеют ровно одну общую точку. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 158]
Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно p + q?
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
На сторонах AB, BC, CD, DA параллелограмма ABCD взяты соответственно точки M, N, K, L, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN – параллелограмм, причём его центр совпадает с центром параллелограмма ABCD.
Существует ли шестиугольник, который можно разбить одной прямой на четыре равных треугольника?
Для заданных значений a, b, c и d оказалось, что графики функций и имеют ровно одну общую точку. Докажите, что графики функций и также имеют ровно одну общую точку.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|