ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 302]      



Задача 98598

Темы:   [ Куб ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 10,11

Некоторый куб рассекли плоскостью так, что в сечении получился пятиугольник.
Докажите, что длина одной из сторон этого пятиугольника отличается от 1 метра по крайней мере на 20 сантиметров.

Прислать комментарий     Решение

Задача 116727

Темы:   [ Куб ]
[ Ломаные внутри квадрата ]
[ Неравенство Коши ]
[ Симметриия и неравенства и экстремумы ]
Сложность: 4-
Классы: 10,11

Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

Прислать комментарий     Решение

Задача 116887

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Прислать комментарий     Решение

Задача 64925

Темы:   [ Куб ]
[ Центр масс ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4
Классы: 10,11

На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек.
Найдите геометрическое место всех таких центров тяжести.

Прислать комментарий     Решение

Задача 65686

Темы:   [ Куб ]
[ Теорема Пифагора в пространстве ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 10,11

Можно ли четырьмя плоскостями разрезать куб с ребром 1 на части так, чтобы для каждой из частей расстояние между любыми двумя её точками было:
  а) меньше 4/5;
  б) меньше 4/7?
Предполагается, что все плоскости проводятся одновременно, куб и его части не двигаются.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .