Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 302]
|
|
Сложность: 3+ Классы: 9,10,11
|
Куб разбит двумя способами на тетраэдры с вершинами в вершинах данного куба.
Верно ли, что в обоих случаях количество тетраэдров одно и то же?
Дан куб с ребром 2. Покажите, как наклеить на него без наложений 10 квадратов со стороной 1 так, чтобы никакие квадраты не граничили по отрезку (по стороне или её части). Перегибать квадраты нельзя.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?
|
|
Сложность: 3+ Классы: 10,11
|
Для какого наибольшего n можно выбрать на поверхности куба n точек так, чтобы не все они лежали в одной грани куба и при этом были вершинами
правильного (плоского) n-угольника.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 302]