ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Какое наибольшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно незакрашенное поле? б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле? Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]
Каких пятизначных чисел больше: не делящихся на 5 или тех, у которых ни первая, ни вторая цифра слева – не пятёрка?
б) Какое наименьшее число полей на доске 8×8 можно закрасить в чёрный цвет так, чтобы в каждом уголке из трёх полей было по крайней мере одно чёрное поле?
Среди десятизначных чисел каких больше: тех, которые можно представить как произведение двух пятизначных чисел, или тех, которые нельзя так представить?
Пусть k и n – натуральные числа, k ≤ n. Расставьте первые n² натуральных чисел в таблицу n×n так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в k-м столбце была а) наименьшей; б) наибольшей.
Десятичные записи натуральных чисел выписаны подряд, начиная с единицы,
до некоторого n включительно: 12345678910111213...(n).
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|