ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что производящая функция последовательности чисел Фибоначчи
F(x) = F0 + F1x + F2x² + ... + Fnxn + ... может быть записана в виде б) Пользуясь результатом задачи 61490, получите формулу Бине (см. задачу 60578. ![]() ![]() На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце? ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 88]
Сколько существует трёхзначных чисел, в записи которых цифры 1, 2, 3 встречаются ровно по одному разу?
На танцплощадке собрались N юношей и N девушек. Сколькими способами они могут разбиться на пары для участия в очередном танце?
В пассажирском поезде 17 вагонов.
Количество перестановок множества из n элементов обозначается Pn. Докажите равенство Pn = n!.
а) Сколькими способами 28 учеников могут выстроиться в очередь в столовую?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 88] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |