ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Ссылки по теме:
Статья Н. Виленкина "Сравнения и классы вычетов" Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8. ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 606]
Сколько существует таких натуральных n, не превосходящих 2012, что сумма 1n + 2n + 3n + 4n оканчивается на 0?
Существуют ли четыре последовательных натуральных числа, каждое из которых можно представить в виде суммы квадратов двух натуральных чисел?
Известно, что b = 20132013 + 2. Будут ли числа b³ + 1 и b² + 2 взаимно простыми?
Докажите, что сумма квадратов трёх натуральных чисел, уменьшенная на 7, не делится на 8.
Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 606] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |