ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из данных чисел делится на 5.

   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 606]      



Задача 30398

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

p,  4p² + 1  и  6p² + 1  – простые числа. Найдите p.

Прислать комментарий     Решение

Задача 30405

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 7,8,9

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из данных чисел делится на 5.

Прислать комментарий     Решение

Задача 30659

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x² – 7y = 10.

Прислать комментарий     Решение

Задача 30660

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  x³ + 21y² + 5 = 0.

Прислать комментарий     Решение

Задача 30661

Темы:   [ Уравнения в целых числах ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Решить в целых числах уравнение  15x² – 7y² = 9.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 606]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .