ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 21454]      



Задача 30687

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 6,7

а) Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?
б) Сколькими способами можно выбрать команду из трех школьников в том же классе?

Прислать комментарий     Решение

Задача 30689

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

Прислать комментарий     Решение

Задача 30693

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

Прислать комментарий     Решение

Задача 30735

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 7,8

а) Спортивный клуб насчитывает 30 членов, из которых надо выделить четыре человека для участия в забеге на 1000 метров. Сколькими способами это можно сделать?
б) Сколькими способами можно составить команду из четырёх человек для участия в эстафете  100 м + 200 м + 300 м + 400 м?

Прислать комментарий     Решение

Задача 30780

Тема:   [ Степень вершины ]
Сложность: 2
Классы: 6,7

Докажите, что не существует графа без петель и кратных рёбер с пятью вершинами, степени которых равны 4, 4, 4, 4, 2.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 21454]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .