ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

   Решение

Задачи

Страница: << 199 200 201 202 203 204 205 >> [Всего задач: 2440]      



Задача 30808

Темы:   [ Обход графов ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру.
Докажите, что эту фигуру можно нарисовать, не отрывая карандаша от бумаги и не проводя дважды одну и ту же линию.

Прислать комментарий     Решение

Задача 30913

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Произведения и факториалы ]
[ Неравенство Коши ]
Сложность: 3
Классы: 6,7

Докажите, что  100! < 50100.

Прислать комментарий     Решение

Задача 31072

Темы:   [ Связность и разложение на связные компоненты ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8

В некоторой стране из столицы выходит 89 дорог, из города Дальний – одна дорога, из остальных 1988 городов – по 20 дорог.
Доказать, что из столицы можно проехать в Дальний.

Прислать комментарий     Решение

Задача 31261

Темы:   [ Арифметика остатков (прочее) ]
[ Китайская теорема об остатках ]
Сложность: 3
Классы: 6,7,8

a ≡ 68 (mod 1967),   a ≡ 69 (mod 1968).  Найти остаток от деления a на 14.

Прислать комментарий     Решение

Задача 31269

Темы:   [ Арифметика остатков (прочее) ]
[ Произведения и факториалы ]
Сложность: 3
Классы: 6,7,8

Может ли  m! + n!  оканчиваться на 1990?

Прислать комментарий     Решение

Страница: << 199 200 201 202 203 204 205 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .