ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B.
  а) Докажите, что есть команда, которая сильнее всех.
  б) Докажите, что команда, выигравшая турнир, сильнее всех.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 383]      



Задача 30810

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8

На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции.
Докажите, что найдутся четверо из них, которых можно усадить за круглый стол так, чтобы каждый сидел рядом со знакомыми ему людьми.

Прислать комментарий     Решение

Задача 30813

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.

Прислать комментарий     Решение

Задача 30826

Тема:   [ Ориентированные графы ]
Сложность: 3+
Классы: 8

Несколько команд сыграли между собой круговой турнир по волейболу. Будем говорить, что команда А сильнее команды B, если либо А выиграла у B, либо существует такая команда C, что А выиграла у C, а C – у B.
  а) Докажите, что есть команда, которая сильнее всех.
  б) Докажите, что команда, выигравшая турнир, сильнее всех.

Прислать комментарий     Решение

Задача 30829

Темы:   [ Ориентированные графы ]
[ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8

Какие-то две команды набрали в круговом волейбольном турнире одинаковое число очков.
Докажите, что найдутся такие команды А, В и С, что А выиграла у В, В выиграла у С, а С выиграла у А.

Прислать комментарий     Решение

Задача 30831

Тема:   [ Ориентированные графы ]
Сложность: 3+
Классы: 8,9

В стране Ориентация на всех дорогах введено одностороннее движение, причём из каждого города в любой другой можно добраться, проехав не более чем по двум дорогам. Одну дорогу закрыли на ремонт так, что из каждого города по-прежнему можно добраться до любого другого. Докажите, что для каждых двух городов это можно сделать, проехав не более чем по трём дорогам.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .