ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадрат разрезали на конечное число прямоугольников. Обязательно ли найдётся отрезок, соединяющий центры (точки пересечения диагоналей) двух прямоугольников, не имеющий общих точек ни с какими другими прямоугольниками, кроме этих двух? ![]() ![]() Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1). ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 177]
Найти наименьшее значение дроби
Определение. Пусть α = (k, j, i) – набор целых неотрицательных чисел, k ≥ j ≥ i. Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам (a, b, c) набора (k, j, i).
Докажите, что многочлен x12 – x9 + x4 – x + 1 при всех значениях x положителен.
a, b, c ≥ 0. Докажите, что 2(a³ + b³ + c³) ≥ a²b + ab² + a²c + ac² + b²c + bc².
Докажите, что при любых x, y, z выполнено неравенство: x4 + y4 + z² + 1 ≥ 2x(xy² – x + z + 1).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 177] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |