Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 79]
|
|
Сложность: 3 Классы: 8,9,10
|
В одной из вершин а) октаэдра; б) куба сидит муха. Может ли она проползти по всем его рёбрам ровно по одному разу и возвратиться в исходную вершину?
|
|
Сложность: 3 Классы: 7,8,9
|
Жук ползёт по рёбрам куба. Сможет ли он последовательно обойти все рёбра, проходя по каждому ребру ровно один раз?
В углах шахматной доски 3×3 стоят четыре коня: два белых (в соседних углах) и два чёрных.
Можно ли за несколько ходов поставить коней так, чтобы во всех соседних углах стояли кони различного цвета?
|
|
Сложность: 3 Классы: 7,8,9
|
Посёлок построен в виде квадрата 3 квартала на 3 квартала (кварталы – квадраты со стороной b, всего 9 кварталов). Какой наименьший путь должен пройти асфальтоукладчик, чтобы заасфальтировать все улицы, если он начинает и кончает свой путь в угловой точке A? (Стороны квадрата – тоже улицы).
Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 79]