ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости отмечены четыре точки. Докажите, что их можно разбить на две группы так, что эти группы точек нельзя будет отделить одну от другой никакой прямой. Решение |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 298]
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку.
На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj
На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.
На окружности радиуса 1 отмечено 100 точек.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 298] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|