ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Вниз   Решение


Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
   

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 50]      



Задача 35637

Темы:   [ Делимость чисел. Общие свойства ]
[ Классические неравенства (прочее) ]
Сложность: 3-
Классы: 8,9

Сумма двух натуральных чисел равна 201. Докажите, что произведение этих чисел не может делиться на 201.

Прислать комментарий     Решение

Задача 34912

Темы:   [ Неравенство Коши ]
[ Классические неравенства (прочее) ]
Сложность: 3

Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
   

Прислать комментарий     Решение

Задача 61372

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

Докажите неравенство  ( + )8 ≥ 64xy(x + y)²   (x, y ≥ 0).

Прислать комментарий     Решение

Задача 32100

Темы:   [ Неравенство Коши ]
[ Классические неравенства (прочее) ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9,10

Доказать неравенство   .

Прислать комментарий     Решение

Задача 61410

Темы:   [ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  x + y + z = 6,  то  x² + y² + z² ≥ 12.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .