Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 204]
|
|
Сложность: 3+ Классы: 10,11
|
На какое наименьшее число тетраэдров можно разбить куб?
Дана правильная треугольная пирамида SABC, ребро основания которой равно 1. Из вершин A и B основания ABC проведены медианы боковых граней, не имеющие общих точек. Известно, что на прямых, содержащих эти медианы, лежат рёбра некоторого куба. Найдите длину бокового ребра пирамиды.
|
|
Сложность: 3+ Классы: 6,7,8
|
В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Докажите, что найдутся три мухи, которые в начальном и конечном положении сидели в вершинах равных треугольников.
|
|
Сложность: 3+ Классы: 10,11
|
У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?
|
|
Сложность: 3+ Классы: 10,11
|
Вася утверждает, что он разрезал выпуклый многогранник, у которого есть лишь треугольные и шестиугольные грани, на две части и склеил из этих частей куб. Могут ли слова Васи быть правдой?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 204]