ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Функция  f(x) на отрезке [a, b] равна максимуму из нескольких функций вида y = C·10–|x–d| (с различными d и C, причём все C положительны). Дано, что
f(a) = f(b). Докажите, что сумма длин участков, на которых функция возрастает, равна сумме длин участков, на которых функция убывает.

Вниз   Решение


Докажите, что для положительных чисел x1, x2, ..., xn, не превосходящих 1, выполнено неравенство
   

ВверхВниз   Решение


Дано n попарно взаимно простых чисел, больших 1 и меньших  (2n – 1)².  Докажите, что среди них обязательно есть простое число.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 275]      



Задача 34920

Темы:   [ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
[ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Дано n попарно взаимно простых чисел, больших 1 и меньших  (2n – 1)².  Докажите, что среди них обязательно есть простое число.

Прислать комментарий     Решение

Задача 34927

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Может ли произведение трёх последовательных натуральных чисел быть степенью натурального числа (квадратом, кубом и т.д.)?

Прислать комментарий     Решение

Задача 35134

Темы:   [ НОД и НОК. Взаимная простота ]
[ Инварианты ]
Сложность: 3+
Классы: 8,9

В строку выписано m натуральных чисел. За один ход можно прибавить по единице к некоторым n из этих чисел.
Всегда ли можно сделать все числа равными?

Прислать комментарий     Решение

Задача 60483

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если в наборе целых чисел a1, ..., an хотя бы одно отлично от 0, то они имеют наибольший общий делитель.

Прислать комментарий     Решение

Задача 60484

Темы:   [ НОД и НОК. Взаимная простота ]
[ Геометрия на клетчатой бумаге ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10

В прямоугольнике с целыми сторонами m и n, нарисованном на клетчатой бумаге, проведена диагональ.
  а) Через какое число узлов она проходит?
  б) На сколько частей эта диагональ делится линиями сетки?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .