ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисовано несколько многоугольников, каждые два из которых имеют общую точку.
Докажите, что найдётся прямая, пересекающая все эти многоугольники.

   Решение

Задачи

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 1547]      



Задача 102711

Темы:   [ Метод координат на плоскости ]
[ Осевая и скользящая симметрии ]
Сложность: 3
Классы: 8,9

Дана точка M(- 1;3). Найдите координаты точки, симметричной точке M относительно а) оси Ox; б) оси Oy; в) начала координат; г) точки K(3;1); д) биссектрисы I и III координатных углов; е) биссектрисы II и IV координатных углов.

Прислать комментарий     Решение


Задача 32076

Темы:   [ Площадь треугольника не превосходит половины произведения двух сторон ]
[ Симметрия помогает решить задачу ]
[ Неравенства с площадями ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9,10

a, b, c, d – стороны четырёхугольника (в любом порядке), S – его площадь. Докажите, что  S ≤ ½ (ab + cd).

Прислать комментарий     Решение

Задача 32140

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

На плоскости даны две окружности одна внутри другой. Построить такую точку O, что одна окружность получается из другой гомотетией относительно точки O (другими словами – чтобы растяжение плоскости от точки O с некоторым коэффициентом переводило одну окружность в другую).

Прислать комментарий     Решение

Задача 34942

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Проекция на прямую (прочее) ]
Сложность: 3+
Классы: 9,10

На плоскости нарисовано несколько многоугольников, каждые два из которых имеют общую точку.
Докажите, что найдётся прямая, пересекающая все эти многоугольники.

Прислать комментарий     Решение

Задача 35782

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Центральная симметрия помогает решить задачу ]
[ Выпуклые и невыпуклые фигуры (прочее) ]
Сложность: 3+
Классы: 8,9,10

На круглой сковороде площади 1 испекли выпуклый блин площади больше ½. Докажите, что центр сковороды находится под блином.

Прислать комментарий     Решение

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .