ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Натуральные числа a, b, c и d удовлетворяют равенству  ab = cd.  Докажите, что число  a2000 + b2000 + c2000 + d2000  составное.

   Решение

Задачи

Страница: << 131 132 133 134 135 136 137 >> [Всего задач: 2440]      



Задача 31290

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 6,7,8

Доказать, что число  53·83·109 + 40·66·96  – составное.

Прислать комментарий     Решение


Задача 31295

Темы:   [ Уравнения в целых числах ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 6,7,8

Есть 100 купюр двух типов: по a и b рублей, причём  a ≠ b (mod 101).
Доказать, что можно выбрать несколько купюр так, что полученная сумма (в рублях) делится на 101.

Прислать комментарий     Решение

Задача 34947

Темы:   [ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10,11

Докажите, что уравнение  x² + y³ = z5  имеет бесконечно много решений в натуральных числах.

Прислать комментарий     Решение

Задача 34968

Темы:   [ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Десятичная система счисления ]
Сложность: 4-
Классы: 8,9,10

Докажите, что для любого числа d, не делящегося на 2 и на 5, найдётся число, в десятичной записи которого содержатся одни единицы и которое делится на d.

Прислать комментарий     Решение

Задача 34997

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 4-
Классы: 7,8,9,10

Натуральные числа a, b, c и d удовлетворяют равенству  ab = cd.  Докажите, что число  a2000 + b2000 + c2000 + d2000  составное.

Прислать комментарий     Решение

Страница: << 131 132 133 134 135 136 137 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .