ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число ребер выпуклого многогранника равно 99. Какое наибольшее число ребер может пересечь плоскость, не проходящая через его вершины?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 75]      



Задача 110143

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
[ Модуль числа (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

В вершинах кубика написали числа от 1 до 8, а на каждом ребре – модуль разности чисел, стоящих в его концах. Какое наименьшее количество различных чисел может быть написано на ребрах?
Прислать комментарий     Решение


Задача 35191

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Экстремальные свойства (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Число ребер выпуклого многогранника равно 99. Какое наибольшее число ребер может пересечь плоскость, не проходящая через его вершины?
Прислать комментарий     Решение


Задача 35737

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9,10,11

Повесьте картину на веревочке на два гвоздя так, чтобы при вытаскивании любого из гвоздей картина падала.

Прислать комментарий     Решение

Задача 76535

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Проективная плоскость с конечным числом точек ]
Сложность: 4-
Классы: 10,11

В городе 57 автобусных маршрутов. Известно, что:
  1) с каждой остановки на любую другую остановку можно попасть без пересадки;
  2) для каждой пары маршрутов найдётся, и притом только одна, остановка, на которой можно пересесть с одного из этих маршрутов на другой;
  3) на каждом маршруте не менее трёх остановок.
Сколько остановок имеет каждый из 57 маршрутов?

Прислать комментарий     Решение

Задача 79364

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Симметричная стратегия ]
Сложность: 4-
Классы: 8

Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения вертикальных и горизонтальных прямых. При этом каждый из них своим ходом должен отметить такой узел, что после этого все отмеченные узлы лежали в вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .