ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 2440]      



Задача 35192

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9

Сколько целых чисел от 1 до 2001 имеют сумму цифр, делящуюся на 5?

Прислать комментарий     Решение

Задача 35261

Темы:   [ Делимость чисел. Общие свойства ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7,8

Про семь натуральных чисел известно, что сумма любых шести из них делится на 5. Докажите, что каждое из этих чисел делится на 5.

Прислать комментарий     Решение

Задача 35305

Темы:   [ Уравнения в целых числах ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10

Был очень жаркий день, и четыре пары выпили вместе 44 бутылки кока-колы. Aнна выпила 2, Бетти 3, Кэрол 4 и Дороти 5 бутылок. М-р Браун выпил столько же бутылок, сколько и его жена, но каждый из других мужчин выпил больше, чем его жена: м-р Грин вдвое, м-р Вайт в три раза и м-р Смит в четыре раза. Назовите жён этих мужчин.

Прислать комментарий     Решение

Задача 35354

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9

Может ли сумма  1 + 2 + 3 + ... + (n – 1) + n  при каком-нибудь натуральном n оканчиваться цифрой 7?

Прислать комментарий     Решение

Задача 35358

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Решить в целых числах уравнения   a)  1/a + 1/b = 1/7;   б)  1/a + 1/b = 1/25.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .