ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На острове Невезения живут только рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. В Думе острова – 101 депутат. В целях сокращения бюджета было решено сократить Думу на одного депутата. Но каждый из депутатов заявил, что, если его выведут из состава Думы, то среди оставшихся депутатов большинство будут лжецами. Сколько рыцарей и сколько лжецов в Думе?

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 590]      



Задача 35503

Темы:   [ Математическая логика (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 2+
Классы: 7,8,9

На острове Невезения живут только рыцари, которые всегда говорят правду, и лжецы, которые всегда лгут. В Думе острова – 101 депутат. В целях сокращения бюджета было решено сократить Думу на одного депутата. Но каждый из депутатов заявил, что, если его выведут из состава Думы, то среди оставшихся депутатов большинство будут лжецами. Сколько рыцарей и сколько лжецов в Думе?

Прислать комментарий     Решение

Задача 35526

Темы:   [ Задачи на проценты и отношения ]
[ Классические неравенства (прочее) ]
Сложность: 2+
Классы: 7,8,9

Под какой процент выгоднее положить деньги в банк на год: 6% в год или 0,5% в месяц?

Прислать комментарий     Решение

Задача 60304

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство для натуральных  n > 1:  

Прислать комментарий     Решение

Задача 60306

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите неравенство:  2n > n.

Прислать комментарий     Решение

Задача 60311

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .